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a b s t r a c t

This article investigates the stability of turbocharger rotors with full-floating ring

bearings. Rotors of turbochargers can show different bifurcations, when a control

parameter—for instance rotor speed—is varied. Considering a rotor run-up, the rotor

typically becomes unstable (first bifurcation) already at low rotor speeds and reaches a

stable limit cycle (1. Subsynchronous). At higher rotor speeds, further bifurcations usually

occur. For instance, the 1. Subsynchronous can become unstable and the system

bifurcates into another limit cycle (2. Subsynchronous, 3. Subsynchronous). Also, limit

cycles may collapse so that the rotor becomes stable again performing mere imbalance

oscillations. Which bifurcations occur, depends on the rotor and bearing parameters.

Since the limit cycle oscillations (1., 2. and 3. Subsynchronous) are normally stable,

i.e., the amplitudes (bearing eccentricities and rotor amplitudes) of the limit cycles

are moderate, they do not impair safe operation of the turbocharger. Although the

Subsynchronous vibrations may not interfere with the proper operation of the

turbocharger, they can be undesirable, since they may cause acoustic noise problems,

for instance.

Depending on the system parameters (rotor mass/inertia, shaft stiffness, bearing

parameters, etc.) the rotor can, however, show a further kind of bifurcation and become

totally unstable (dangerous high bearing eccentricities and rotor amplitudes), which in

practice often leads to the destruction of the rotor. This phenomenon is called Total

Instability in the present paper.

The article at hand examines a medium-sized turbocharger supported in full-floating

ring bearings and analyses the bifurcation into Total Instability. The dynamics of the

rotor/bearing system is investigated in detail and a sound physical explanation of the

Total Instability is given. For this purpose, transient multibody simulations and

eigenvalue calculations of the rotor/bearing system are carried out. In addition, a run-

up measurement, which exhibits Total Instability, is compared with simulation results.

It is shown in this paper that bifurcation into Total Instability can physically be

explained as synchronization of two limit cycles, namely as synchronization of the inner

and outer oil whirl/whip of the floating ring bearings.
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All rights reserved.
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1. Introduction

Instabilities and bifurcations occurring in rotors supported with hydrodynamic bearings are often induced by the oil
films and entail the well-known oil whirl and oil whip phenomena. Without or with less external damping, a rotor—e.g., a
Laval rotor (see Appendix C)—could not be run in the unstable oil whirl/whip region, because bearing eccentricity e would
almost reach 1 (see Fig. 1(a), plot with damping dex ¼ 5 Ns/m). If external damping is applied, e.g., a velocity-proportional
damping force acting at the center of the rotor (see Appendix C), the oil-film induced instability leads to a limit cycle
oscillation with moderate amplitudes, i.e., bearing eccentricities remain clearly less than 1 (see Fig. 1(a), plots with
damping dex ¼ 30 and 60 Ns/m). The higher the external damping, the smaller the orbit (bearing eccentricity e) of the limit
cycle is. If the external damping is high enough and if the parameters of the rotor/bearing system are properly chosen, the
instability (oil whirl/whip) can be passed through and the rotor becomes stable again at higher rotor speeds, see Fig. 1(b).
Fig. 1. Run-up simulations of a Laval rotor symmetrically supported in two plain hydrodynamic bearings; bearing eccentricity e over time for two

different stiff rotors and varying external damping: (a) Laval rotor (rotor eigenfrequency oEig ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cshaft=m

p
¼ 1950 Hz, imbalance UR ¼ 0.4 gmm) with

external damping dex ¼ 5, 30, 60 Ns/m and (b) Laval rotor (rotor eigenfrequency oEig ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cshaft=m

p
¼ 710 Hz, imbalance UR ¼ 0.4 gmm) with external

damping dex ¼ 40, 60, 90 Ns/m.
Because of the double oil film, rotors with full-floating ring bearings exhibit a more complex system behavior than
rotors with single oil film bearings. Regarding full-floating ring bearings, both oil films—the inner and the outer oil
film—may become unstable. Therefore, one observes oil-whirl/whip induced self-excited oscillations resulting from the
inner and the outer oil film. Since the effective hydrodynamic angular velocity (see Appendix A) in the inner fluid film is
higher than the effective hydrodynamic angular velocity in the outer fluid film when the rotor is in a stable equilibrium
position, the inner fluid film is usually the first to become unstable.

A gyroscopic eigenvalue analysis of the linearized rotor/bearing system of a conventional turbocharger shows that the
first four normal modes are approximately rigid body modes, namely the gyroscopic conical backward and the gyroscopic

conical forward mode as well as the gyroscopic translational backward and the gyroscopic translational forward mode

(see Appendix B.1). Note that under normal operating conditions, the backward modes are not or just slightly excited.
In the examined turbocharger system, higher normal modes—for instance bending modes, see modes 6 and 7 in
Appendix B.1—are not or just slightly excited in the observed speed range. Therefore, the gyroscopic conical forward mode

and the gyroscopic translational forward mode are the mainly excited modes of the system.
Considering a turbocharger rotor in full-floating ring bearings, the inner and the outer fluid films of the left

(compressor-sided) and right (turbine-sided) floating ring bearing can become unstable. This leads to oil whirl/whip

instabilities in the inner and the outer fluid films with corresponding whirl/whip frequencies. The inner and the outer whirl/

whip frequencies will excite the normal modes of the rotor/bearing system. So, basically four cases may be distinguished:
�
 The oil whirl/whip in the inner fluid film(s) excites the gyroscopic conical forward mode (the corresponding frequency in
the spectrum cascade is called 1. Subsynchronous).

�
 The oil whirl/whip in the inner fluid film(s) excites the gyroscopic translational forward mode (2. Subsynchronous).

�
 The oil whirl/whip in the outer fluid film(s) excites the gyroscopic conical forward mode (3. Subsynchronous).

�
 The oil whirl/whip in the outer fluid film(s) excites the gyroscopic translational forward mode (4. Subsynchronous).

Turbochargers running under normal operating conditions—i.e., rotor speed is below the threshold speed for Total

Instability—only exhibit the 1., 2. and 3. Subsynchronous. We are not aware of any measurements or simulations that show
the 4. Subsynchronous, although occurrence of the 4. Subsynchronous is theoretically possible.
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Besides the self-excited oscillations (1., 2. and 3. Subsynchronous) mentioned above, the system can reach a further
limit cycle, which is called Total Instability in this paper. It will be shown in Section 3 that Total Instability is caused
by the synchronization of two limit cycle oscillations: The inner and the outer oil whirl/whip synchronize and
the synchronized whirl/whip frequency excites a natural mode of the rotor system (gyroscopic forward mode 2 of

Appendix B.2). Due to the whirl/whip synchronization, the (mutual) damping of the inner and outer oil films is significantly
reduced. This results in almost circular inner and outer whirl/whip orbits with inner and outer bearing eccentricities ei,o

close to 1.
Hence, for safely operating turbochargers, mainly four frequencies will be detected in spectrum cascades of rotor run-

ups (also multiples, fractions and combinations of these four frequencies due to system nonlinearities [1]):
�
 The Synchronous (due to rotor imbalance).

�
 The 1. Subsynchronous (oil whirl/whip in the inner fluid film excites the gyroscopic conical forward mode; the outer fluid

film damps the inner oil whirl/whip).

�
 The 2. Subsynchronous (oil whirl/whip in the inner fluid film excites the gyroscopic translational forward mode; the outer

fluid film damps the inner oil whirl/whip).

�
 The 3. Subsynchronous (oil whirl/whip in the outer fluid film excites the gyroscopic conical forward mode; the inner fluid

film damps the outer oil whirl/whip).

Since the inner oil whirl/whip is damped by the outer oil films and vice versa, the inner and outer bearing eccentricities
ei,o usually remain well below 1 during oscillation in the 1., 2. and 3. Subsynchronous. Which of the three Subsynchronous

occur in the frequency spectrum and at which rotor speed they arise, depends on the parameters of the rotor/bearing
system (rotor mass/inertia, shaft stiffness, bearing parameters, etc.).

In the following, a typical bifurcation sequence (see Fig. 3(c)), often observed in turbocharger run-ups, is described:
(I)
 At low rotor speeds, the rotor is stable and performs imbalance vibrations (Synchronous) around a stable equilibrium
position.
(II)
 When the rotor speed is increased, the inner fluid films become unstable and excite the gyroscopic conical forward

mode. The rotor reaches a stable limit cycle (1. Subsynchronous). The amplitudes of the 1. Subsynchronous are moderate:
Due to the damping of the outer fluid films, the bearing eccentricities ei of the inner fluid films remain clearly o1.
(III)
 When the rotor speed is further increased, a second bifurcation emerges. The first limit cycle (1. Subsynchronous)
becomes unstable and the rotor bifurcates into a second limit cycle (2. Subsynchronous), i.e., the inner fluid films
remain unstable, but they now excite the gyroscopic translational forward mode. In other words, the system jumps from
the gyroscopic conical forward mode into the gyroscopic translational forward mode.
(IV)
 Increasing rotor speed even further leads to a third bifurcation. The 2. Subsynchronous disappears and the system
becomes stable again (only Synchronous). Thus, the oil whirl/whip instability of the inner fluid films is passed through.
(V)
 Again increasing rotor speed, a fourth bifurcation occurs. Now, the outer fluid films become unstable and excite the
gyroscopic conical forward mode. The rotor reaches a stable limit cycle (3. Subsynchronous). The amplitudes of the 3.

Subsynchronous are moderate: Due to the damping of the inner fluid films, the outer bearing eccentricities eo remain
clearly o1.
Remark 1. It is also possible that the 2. Subsynchronous and the 3. Subsynchronous occur simultaneously (stable limit
cycle oscillation with two Subsynchronous and moderate amplitudes), see Fig. 2. In this case, inner and outer oil whirl/

whip occur simultaneously. The system is, however, not totally unstable, since the inner and the outer whirl/whip

frequency are different, so that the inner and the outer oil films can damp each other sufficiently (mutual damping
due to _�i;o and _di;o movement, see Appendix A.3).

Remark 2. The 2. Subsynchronous and 3. Subsynchronous may be apparent up to the maximum operating speed.
Somtimes, however, the instabilities can be passed through, i.e., the Subsynchronous will disappear at high rotor
speeds. In this case, the rotor becomes again stable and performs imbalance vibrations around a stable equilibrium
position (see Figs. 2 and 3(b, d, e)).

In addition to the bifurcation scenario described above, various other bifurcation sequences are observed in
measurements and simulations. Some typical bifurcation scenarios are qualitatively illustrated in Fig. 3.

It should be mentioned that the simultaneous appearance of two subsynchronous whirl/whip frequencies
in rotor systems (see above Remark 1) is well known in literature. In Ref. [2], the coexistence of two lateral modes
of an isotropic rotor has been reported. The coupled motion of two neighboring shafts has been investigated in Ref. [3],
where the coexistence of two whirl/whip frequencies resulting from the instabilities of two coupled shafts is
examined. Also, a coupling effect is discussed, which resembles the Total Instability of turbochargers in full-floating ring
bearings.
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Fig. 2. Spectrum cascade (displacement of compressor-sided shaft extension) measured during a rotor run-up of an automotive turbocharger [1].
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General remark on the use of the term ‘‘limit cycle’’ in this paper: The term ‘‘limit cycle’’ is normally used only
for self-excited motions of autonomous systems (e.g., rotor balanced perfectly). The notions ‘‘subsynchronous whirl/whip’’

or ‘‘non-synchronous whirl/whip’’ are frequently used for self-excited motions of non-autonomous systems (e.g., rotor
with imbalance), see Refs. [3,4]. In the present paper, we use the term ‘‘limit cycle’’ generally for self-excited motions of
non-autonomous systems, i.e., also for quasiperiodic oscillations.

Early works on the stability of rotors in hydrodynamic journal bearings based on simple rotor/bearing models can be
found in Refs. [5–8]. Fundamental theoretical analyses on the oil whirl and oil whip phenomena are carried out in Refs.
[9–11]. A detailed survey on experimental and theoretical works concerning the stability of rotors in hydrodynamic
bearings is given in Ref. [4]. The influence of external damping on the stability of a Laval rotor is, for instance, discussed in
Refs. [12,13].

Linear stability analyses for a Laval rotor in full-floating ring bearings have, e.g., been carried out in Refs. [14,15]; ring
speed measurements can be found in Refs. [16,17]. Bifurcations occurring in Laval rotor systems with full-floating ring
bearings are investigated in Ref. [18]. Run-up measurements and corresponding simulations as well as a detailed review on
recent works on turbocharger rotors with floating ring bearings can be found in Refs. [19–21].

In order to analyze the bifurcation behavior of the rotor/bearing system, only run-up simulations are performed in this
work. Because of the system’s complexity, no analytical stability and bifurcation calculations are accomplished. A
theoretical overview on nonlinear vibration effects occurring in dynamical systems—like the here investigated
turbocharger system—can be found in Refs. [22,23], stability and bifurcations are treated, for instance, in Ref. [24].
Bifurcation analyses in connection with rotors in plain hydrodynamic bearings and full-floating ring bearings are carried
out in Refs. [25–27].

This paper is structured as follows: In Section 2, the rotor model is introduced. Five run-up simulations are presented in
Section 3. On the basis of these simulations and the eigenvalue calculations in Appendix B, the physical effects leading to
the Total Instability are explained. In Section 4, a test-rig measurement, which exhibits Total Instability is presented. The
paper is concluded in Section 5. In Appendix A, some basic geometrical properties concerning full-floating ring bearings are
summarized. Results of three gyroscopic eigenfrequency analyses for the examined turbocharger rotor, are collected in
Appendix B. Investigations on the stability behavior of a Laval (Jeffcott) rotor supported in plain hydrodynamic journal
bearings and in full-floating ring bearings are carried out in Appendix C.
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Fig. 3. Sketches of eight basic bifurcation sequences often observed in turbocharger run-ups (Syn ¼ Synchronous, Sub 1 ¼ 1. Subsynchronous, etc.): (a) Sub 1,

intermittent stabilization, Sub 2, (b) Sub 1 and Sub 2, Sub 2 is passed through, (c) Sub 1, Sub 2, intermittent stabilization and Sub 3, (d) Sub 1, Sub 2 and at same time

Sub 3, (e) Sub 1, Sub 2 and at same time Sub 3, (f) Sub 1 and Sub 3, (g) Sub 3 (Sub 1 not or only slightly) and (h) Sub 3 and Total Instability (Sub 1 not or only slightly).

B. Schweizer / Journal of Sound and Vibration 328 (2009) 156–190160
2. Rotor/bearing model of the turbocharger

The turbocharger rotor examined in this work consists of a rotor shaft, a compressor wheel, and a turbine wheel. A
sketch of the rotor/bearing system is depicted in Fig. 4. Both wheels are fixed to the shaft. The imbalance of the two wheels
is illustrated by two point masses. The rotor is supported in two full-floating ring bearings. To investigate the rotor
vibrations and bifurcations, the vertical displacement (y-displacement) of the measurement point is analyzed.
Fig. 4. Basic design of a turbocharger rotor.
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For simulating turbocharger run-ups, a flexible multibody model [28] of the rotor/bearing system has been created. In
this paper, a medium-sized turbocharger is examined. Some general data concerning the rotor are itemized below:
�

Fig
tur
Rotor length: ‘ � 300 mm

�
 Rotor mass: m � 2:5 kg

�
 Dynamic oil viscosity (at 20 1C): Z � 0:2 Ns=m2
�
 Imbalance turbine/compressor wheel (Simulation 1): UT � 7:0 gmm=UC � 2:5 gmm

�
 Considered speed range: 0poRotorp1400 Hz

�
 Oil supply pressure: psup � 4 bar

�
 Oil supply temperature: Tsup � 90 �C
Rotor dynamics and rotor stability are mainly influenced by the floating ring bearings, i.e., by the oil flow and pressure
generation in the inner and outer oil gap of the bearings. For calculating the pressure distribution in the oil gaps, Reynolds
equation [29,30] is used. In this work, we assume an isothermal fluid flow; inertia effects, turbulence and misalignment are
neglected. Reynolds equation is solved for the pressure field in the inner and outer oil gap by a finite element approach. With the
pressure field, the resultant fluid film forces and friction torques can be calculated depending on position and velocity of rotor
journal and floating ring. Fluid film forces and friction torques are implemented into the multibody model via look-up tables.

In the multibody model of the turbocharger, housing elasticity is taken into account by means of two linear springs,
acting in the x- and y-direction with spring constants chousing;x and chousing;y. Housing damping is simply modeled by linear
dampers with damper constants dhousing;x and dhousing;y, arranged parallel to the springs, see Fig. 5.
Fig. 5. Cross section through full-floating ring bearing: elastically bedded housing, ring and shaft.
The rotor shaft is discretized by finite elements, see Fig. 6(a), and incorporated into the multibody system using
component mode synthesis [31], see Fig. 6(b). Compressor and turbine wheel—both modeled as rigid bodies—are
. 6. (a) Finite element model of rotor shaft, (b) modally reduced rotor shaft, (c) finite element model of complete rotor and (d) multibody model of

bocharger.
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appropriately attached to the shaft. The accuracy of the modally reduced rotor model was checked by an eigenvalue
analysis of the fully discretized rotor, see Fig. 6(c), and also by an experimental modal analysis.

The two floating rings are modeled as rigid bodies able to perform translational and rotational motions. They are driven by
the friction torque of the inner fluid films and retarded by the friction torque of the outer fluid films. The model does not
consider any axial forces, e.g., due to axial thrust, and has no axial bearing. The complete multibody model is shown in Fig. 6(d).

3. Simulation results

Five run-up simulations with different system parameters have been carried out in order to illustrate and explain the
bifurcations occurring in turbocharger systems.
�

Tab
Sim

Inn

Out

Inn

Out

Hou

Imb

Imb
In Simulations 1 and 2, the rotor does not reach Total Instability within the considered speed range.

�
 Simulations 3, 4 and 5 exhibit Total Instability.

�
 Simulation 3 almost shows the measured instability frequency (� 280 Hz) and also the correct vibration mode

(gyroscopic forward mode 2 of Appendix B.2), obviously because housing stiffness has been chosen properly.

�
 In Simulation 4, housing stiffness has evidently been assumed too high, so that the instability frequency in the region of

Total Instability is too high (� 400 Hz). Also, the vibration mode is not correct (gyroscopic forward mode 2 of Appendix B.3

instead of gyroscopic forward mode 2 of Appendix B.2).

�
 In Simulation 5, housing stiffness has been assumed too low with the consequence that the instability frequency is too

low (� 250 Hz), although the mode shape is correct (gyroscopic forward mode 2 of Appendix B.2).

Parameters of the rotor/bearing system for the five run-up simulations are collected in Table 1, which shows the
percentage changes relative to Simulation 1 (reference simulation).
le 1
ulation parameters.

Sim 1 (%) (reference) Sim 2 (%) Sim 3 (%) Sim 4 (%) Sim 5 (%)

er bearing width Bi 100 – – – –

er bearing width Bo 100 – 75 75 75

er bearing clearance ci 100 – 145 145 145

er bearing clearance co 100 120 175 175 175

sing stiffness chousing 100 – – 1100 33

alance turbine UT 100 – 190 115 220

alance compressor UC 100 – – – 180
3.1. Simulation 1 (reference simulation)

In Simulation 1, the rotor exhibits the Synchronous, the 1. Subsynchronous and the 2. Subsynchronous; the rotor does not
reach Total Instability in the considered speed range. Fig. 7(a) shows the vertical vibration of the compressor-sided shaft
extension (y-displacement of measurement point in Fig. 4) and also the y-displacement of the turbine wheel’s center of
mass (blue line); the green line represents rotor speed, which is steadily increased from 50 Hz up to 1400 Hz. The
corresponding waterfall diagram of the vertical vibration of the measurement point is depicted in Fig. 7(b) and (c). The
bifurcation sequence corresponds with Fig. 3(b). Which fluid films become unstable, can be seen regarding the inner/outer
bearing eccentricities �l_i=�l_o and �r_i=�r_o of the left (compressor-sided) and right (turbine-sided) floating ring bearing in
Fig. 7(d)–(e) as well as the effective hydrodynamic angular velocities oeff_l_i=oeff_l_o and oeff_r_i=oeff_r_o in Fig. 7(f)–(i).
�
 Up to t � 1200 ms, the rotor is stable and performs imbalance vibrations (Synchronous) around a stable equilibrium position.

�
 At t � 1200 ms, the inner oil films—in particular the inner oil film of the left bearing—become unstable (large increase

in �i, oeff_i � 0 at the onset of the instability) and the system reaches a stable limit cycle. The oil whirl/whip frequency of
the inner oil films excites the gyroscopic conical forward mode (1. Subsynchronous).

�
 The inner fluid films are stable again at t � 2600 ms.

�
 At t � 3000 ms, the inner fluid films—in particular the inner oil film of the left bearing—become unstable again, but

now they excite the gyroscopic translational forward mode (2. Subsynchronous).

�
 At t � 5500 ms, the inner fluid films become stable again, the instability is passed through and the system (mainly)

performs imbalance vibrations (Synchronous) about a stable equilibrium position (concerning the exact definition of
fluid film instability, note the corresponding remark in Appendix C.1).

It should be mentioned that the high peaks in the plots of oeff_i;o result from the singularity of oeff_i;o for �i;o ¼ 0
(see Appendix A).
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Fig. 7. Run-up Simulation 1: (a) y-displacement of measurement point (red) and CM turbine wheel (blue), rotor angular velocity (green), (b) 3D-waterfall

diagram of plot (a), (c) top-view waterfall diagram, (d, e) bearing eccentricities and (f)–(i) effective hydrodynamic angular velocities. (For interpretation of

the references to the color in this figure legend, the reader is referred to the web version of this article.)

B. Schweizer / Journal of Sound and Vibration 328 (2009) 156–190 163
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Fig. 7. (Continued)
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3.2. Simulation 2

Compared to Simulation 1, the radial clearance co of the outer oil gap is increased by 20%. In Simulation 2 (Fig. 8), the
rotor shows the Synchronous, the 1. Subsynchronous, the 2. Subsynchronous and the 3. Subsynchronous; the rotor does not
reach Total Instability in the observed speed range. The bifurcation sequence correlates with Fig. 3(c).
�
 The rotor is stable and vibrates around a stable equilibrium position (Synchronous) up to t � 1200 ms.

�
 The inner oil film(s)—primarily the inner oil film of the left bearing—become(s) unstable at t � 1200 ms and the rotor

reaches the 1. Subsynchronous.

�
 The inner fluid films are stable again at t � 2100 ms.

�
 At t � 2900 ms, the inner fluid films become unstable again and the rotor reaches the 2. Subsynchronous.

�
 The inner fluid films are stable again at t � 4300 ms and the rotor performs mere imbalance vibrations (Synchronous).

�
 At t � 8000 ms, the outer oil films becomes unstable (large increase and large amplitudes in �o (especially �r_o), oeff_o

oscillating around zero). The rotor reaches a stable limit cycle (3. Subsynchronous), where the oil whirl/whip frequency of
the outer oil films excites the gyroscopic conical forward mode.
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Fig. 8. Run-up Simulation 2: (a) y-displacement of measurement point (red) and CM turbine wheel (blue), rotor angular velocity (green), (b) 3D-waterfall

diagram of plot (a), (c) top-view waterfall diagram, (d, e) bearing eccentricities, (f)–(i) effective hydrodynamic angular velocities. (For interpretation of the

references to the color in this figure legend, the reader is referred to the web version of this article.)

B. Schweizer / Journal of Sound and Vibration 328 (2009) 156–190 165
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Fig. 8. (Continued)
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3.3. Simulation 3

In contrast to Simulation 1, the width Bo of the outer oil gap is reduced by 25%, the outer clearance co is increased by
75% and the inner clearance ci is increased by 45%. Furthermore, imbalance UT at the turbine wheel is increased by 90%. As
in the previous two simulations, housing stiffness is assumed to be chousing;x ¼ chousing;y ¼ 3E4 N=mm and housing
damping is chosen by dhousing;x ¼ dhousing;y ¼ 200 Ns=m. In Simulation 3 (Fig. 9), the rotor exhibits the Synchronous and the
3. Subsynchronous; the rotor reaches Total Instability. The bifurcation sequence coincides with Fig. 3(h).
�
 Up to tE3500 ms, the rotor performs imbalance vibrations (Synchronous) around a stable equilibrium. The imbalance
oscillations are superimposed by transient oscillations due to the setting process at the beginning of the simulation.

�
 The outer oil films become unstable at t � 3500 ms and the system bifurcates into the 3. Subsynchronous.

�
 At tE8700 ms, Total Instability is reached.
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Fig. 9. Run-up Simulation 3: (a) y-displacement of measurement point (red) and CM turbine wheel (blue), rotor angular velocity (green), (b) detail of (a),

(c) 3D-waterfall diagram of plot (a), (d) top-view waterfall diagram, (e, f) bearing eccentricities and (g)–(j) effective hydrodynamic angular velocities. (For

interpretation of the references to the color in this figure legend, the reader is referred to the web version of this article.)

B. Schweizer / Journal of Sound and Vibration 328 (2009) 156–190 167
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Fig. 9. (Continued)
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Prior to bifurcation into Total Instability, one observes:
�
 With increasing rotor speed, the mean values of the inner and outer bearing eccentricities �i;o steadily increase, but the
amplitudes of �i;o steadily decrease. On the other hand, in Simulation 2, the mean values and amplitudes of �i;o remain
almost constant when the rotor vibrates in the 3. Subsynchronous.

�
 At the beginning of the 3. Subsynchronous, the effective hydrodynamic angular velocities oeff_o of the outer fluid films

oscillate approximately around zero (see, e.g., plots for oeff_o at tE5000 ms); the mean values of the effective
hydrodynamic angular velocities of the inner fluid films oeff_i are greater than zero and have larger amplitudes. When
the rotor speed is increased, the mean values of oeff_o steadily decrease; also the amplitudes of oeff_i continuously
decrease.

�
 Due to the increasing inner and outer bearing eccentricities, the stiffness of the fluid films is continuously increased.

Also, the fluid film damping behavior becomes increasingly ‘‘harder’’.

The onset of Total Instability is characterized by the following:
�
 A large, almost instantaneous increase (jump) of the rotor amplitudes and bearing eccentricities �i;o (especially large
increase in ei) is observed. Also, one detects a strong reduction of the amplitudes of the effective hydrodynamic angular
velocities oeff_i;o (especially oeff_i) and a clear jump of the mean values of oeff_o.

�
 The system jumps from the gyroscopic conical forward mode (3. Subsynchronous) into the gyroscopic forward mode 2 of

Appendix B.2 (Total Instability) with an instability frequency of � 300 Hz.

�
 Total Instability is induced when the inner fluid films become unstable (large increase in �i indicates the onset of the

instability of the inner fluid films) so that now inner and outer fluid films are simultaneously unstable. The inner and the
outer whirl/whip synchronize and excite both the gyroscopic forward mode 2 of Appendix B.2. Due to this synchronization,
the mutual damping between the inner and outer oil films is strongly reduced (reduced _�i;o and _di;o damping) [18].

�
 When the inner and outer oil films are both unstable and excite the same mode (gyroscopic forward mode 2 of Appendix

B.2), this mode frequency is too large for the nominal outer whirl frequency and too small for the nominal inner whirl

frequency. Consequently, neither oeff_i ¼ 0, nor oeff_o ¼ 0. In the region of Total Instability, oeff_i40 and oeff_oo0. Note
that the nominal whirl frequency of the inner fluid film is � 0:5 � ðoJ þoRÞ and the nominal whirl frequency of the outer
fluid film is � 0:5 �oR (see Appendix A.2).

�
 In the region of Total Instability, oeff_i40 so that the inner fluid films drive the rotor. oeff_oo0, i.e., the outer fluid films

damp the (almost circular) rotor movement.

3.4. Simulation 4

In comparison with Simulation 3, imbalance of turbine wheel UT is decreased by 75%. Compared with Simulations 1–3,
housing stiffness is increased to chousing;x ¼ chousing;y ¼ 3:5E5 N=mm (almost rigid bearing housing). The results of
Simulation 4 are shown in Fig. 10. The rotor exhibits the Synchronous and the 3. Subsynchronous; the rotor reaches Total

Instability. The bifurcation sequence corresponds to Fig. 3(h).
�
 Stable imbalance oscillations (Synchronous) are detected up to t � 3600 ms.

�
 The outer oil films become unstable at t � 3600 ms (3. Subsynchronous).

�
 The rotor reaches Total Instability at t � 9150 ms.
The bifurcation behavior is quite similar to Simulation 3. The main differences to Simulation 3 are:
�
 The rotor does not bifurcate into the gyroscopic forward mode 2 of Appendix B.2, but into the gyroscopic forward mode 2 of

Appendix B.3 , see Fig. 10(b), because of the increased housing stiffness. This means that the instability frequency is too
high (� 400 Hz) compared to the measurement in Section 4. Therefore, taking housing stiffness into account properly
allows to correctly simulate mode shape and frequency in the Total Instability.

�
 The bearing eccentricities are larger in the region of Total Instability than in Simulation 3 (apart from �l_o). Trend: The

higher the housing stiffness, the higher the bearing eccentricities.

�
 Compared with Simulation 3, the threshold speed for reaching Total Instability is increased, mainly because of the

reduced imbalance.
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Fig. 10. Run-up Simulation 4: (a) y-displacement of measurement point (red) and CM turbine wheel (blue), rotor angular velocity (green), (b) detail of (a),

(c) 3D-waterfall diagram of plot (a), (d) top-view waterfall diagram, (e, f) bearing eccentricities and (g)–(j) effective hydrodynamic angular velocities. (For

interpretation of the references to the color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 10. (Continued)
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3.5. Simulation 5

In contrast to Simulation 3, imbalances UC and UT at the compressor and turbine wheel are both increased (see Table 1).
Housing stiffness is decreased to chousing;x ¼ chousing;y ¼ 1:0E4 N=mm. The results of Simulation 5 are summarized in
Fig. 11. The bifurcation sequence agrees again with Fig. 3(h).
�
 Up to t � 4300 ms, one only observes imbalance oscillations (Synchronous), superimposed by transient oscillations due
to the setting process at the beginning of the simulation.

�
 At t � 4300 ms, the rotor bifurcates into the 3. Subsynchronous.

�
 Total Instability is reached at t � 8200 ms.

The bifurcation sequence resembles Simulation 3. The main differences compared with Simulation 3 are:
�
 Although the rotor bifurcates into the gyroscopic forward mode 2 of Appendix B.2, see Fig. 11(b), instability frequency is
too low (� 220 Hz) compared with the measurement in Section 4 due to the reduced housing stiffness.

�
 The bearing eccentricities �i;o are less than in Simulation 3 and clearly o1 in the region of the Total Instability.

�
 Compared with Simulation 3, the threshold speed for reaching Total Instability is decreased, mainly because of the

increased imbalances.
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Fig. 11. Run-up Simulation 5: (a) y-displacement of measurement point (red) and CM turbine wheel (blue), rotor angular velocity (green), (b) detail of (a),

(c) 3D-waterfall diagram of plot (a), (d) top-view waterfall diagram, (e, f) bearing eccentricities and (g)–(j) effective hydrodynamic angular velocities. (For

interpretation of the references to the color in this figure legend, the reader is referred to the web version of this article.)

B. Schweizer / Journal of Sound and Vibration 328 (2009) 156–190172
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Fig. 11. (Continued)
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3.6. Discussion of simulation results

The presented and further simulations with the current rotor show that the threshold speed for reaching Total Instability

is decreased by
�
 increasing the outer bearing clearance co,

�
 decreasing the outer bearing width Bo,

�
 increasing the inner bearing width Bi,

�
 increasing the imbalance or by

�
 decreasing the oil supply pressure.
Simulations 3–5 exhibit Total Instability. The basic transition into Total Instability is the same in all three calculations. One
can draw several general conclusions from the simulations:
�
 When the rotor becomes totally unstable, the system bifurcates from the gyroscopic conical forward mode

(3. Subsynchronous) into the gyroscopic forward mode 2 of Appendix B.2 (gyroscopic forward mode 2 of Appendix B.3 in
Simulation 4).

�
 Note that although bearing eccentricities �i;o are very large and almost 1 when the rotor is in the region of the Total

Instability, from a mechanical point of view, oscillation in the Total Instability is also a ‘‘stable’’ self-excited limit cycle
oscillation. So, strictly speaking the rotor bifurcates from a limit cycle with moderate bearing eccentricities
(3. Subsynchronous) into a limit cycle with very high bearing eccentricities (Total Instability). Therefore, totally unstable
just means: Too high bearing eccentricities for safe technical operation.
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It is not very easy to give a clear physical explanation why the system bifurcates from the 3. Subsynchronous into the
Total Instability, since the system is complex and behaves in a highly nonlinear manner. It is clear that when rotor speed
is increased, ring speeds also increase. Moreover, the inner and outer bearing eccentricities steadily increase with higher
rotor speeds. Due to the higher bearing eccentricities, stiffness of the fluid films is steadily increased and the damping
behavior of the fluid films becomes progressively ‘‘harder’’, which leads to a reduction of the (mutual) damping of the
inner/outer oil films. Also, the whirl/whip frequency of the outer oil films (3. Subsynchronous) rises continuously. At a
certain rotor speed, the bearing eccentricities are large enough, the whirl/whip frequency of the outer oil films is high
enough, and also the stiffness and damping characteristic of the fluid films have changed in such a way that the limit
cycle (3. Subsynchronous) becomes unstable and the system bifurcates into Total Instability.

�
 In contrast to the 1., 2. and 3. Subsynchronous, it is difficult to judge which of the four oil films is responsible for the

bifurcation into Total Instability. One possible explanation could be the following: Due to the increasing bearing
eccentricities, the damping behavior of the outer oil films is successively reduced so that at a certain point, the damping
behavior of the outer oil films is too low to sufficiently damp the inner oil films. As a consequence, the inner oil films
also become unstable, so that both oil films are simultaneously unstable and the system bifurcates into the Total

Instability. It should be stressed that this explanation is a mere assumption and cannot be substantiated. Perhaps, the
best interpretation for the Total Instability is to simply consider Total Instability as a bifurcation of the rotor/bearing
system as a whole without any focus on a specific fluid film.

�
 In Table 2, Simulations 4, 3, and 5 are compared. It is evident that the more unstable the system becomes (4! 3! 5),

the higher the bearing eccentricities are (increased bearing stiffness, ‘‘harder’’ bearing damping) and the higher the
whirl/whip frequency of the 3. Subsynchronous is.
le 2
parison of different system quantities at simulation time t ¼ 7000 ms for Simulations 4, 3 and 5: mean value of bearing eccentricities, ring speeds,

ration amplitude of measurement point (y-displacement) and frequency of 3. Subsynchronous.

Sim 4 Sim 3 Sim 5

ring eccentricity �l_i 0.1105 0.184 0.1909

ring eccentricity �l_o 0.7223 0.774 0.806

ring eccentricity �r_i 0.2919 0.3814 0.4126

ring eccentricity �r_o 0.8779 0.9 0.9108

ring speed oR_l (rad/ms) 1.598 1.517 1.457

ht ring speed oR_r (rad/ms) 1.22 1.186 1.150

plitude measurement point (mm) 0.288 0.3289 0.3939

quency of 3. Subsynchronous (Hz) 131 139 139
The turbocharger investigated in this paper bifurcates from the 3. Subsynchronous into the Total Instability. It is also
imaginable that bifurcation into the Total Instability occurs as depicted in Fig. 12, namely from the 2. Subsynchronous or from
the 2./3. Subsynchronous. However, the bifurcations sketched in Fig. 12 have not been observed with the actual rotor and the
actual bearing parameters. Furthermore, it should be noted that the synchronized inner and outer whirl/whip may also
excite higher normal modes (e.g., gyroscopic forward mode 4 of Appendix B.2), although this has not been detected with the
current rotor.
. 12. Other possible bifurcation sequences into Total Instability: (a) bifurcation from Sub 2 into Total Instability and (b) bifurcation from Sub 2/Sub 3 into

l Instability.
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4. Test-rig measurement of a rotor run-up

The run-up simulations are now compared with a corresponding measurement [32,33] carried out on a hot-gas
turbocharger test rig, see Fig. 13(a). Hot gas, supplied through the hot gas pipe, sets the turbine wheel into rotation.
Ambient air is compressed by the compressor wheel and exits the turbocharger through the charged air pipe. Lateral
vibrations of the compressor-sided shaft extension are measured using eddy current sensors. The measurement starts at a
rotor speed of E830 Hz. Rotor speed is steadily, but not uniformly increased.

Fig. 13(b) shows a 3D-waterfall diagram of the run-up measurement (y-displacement of the measurement point, see Fig. 4).
The rotor becomes totally unstable at a rotor speed of approximately 1350 Hz; the instability frequency is approximately 280 Hz.

The measurement shows qualitatively and quantitatively the same behavior as Simulation 3:
(I)
Fig.
Insta
Before the Total Instability occurs, the rotor vibrates in the 3. Subsynchronous.

(II)
 At a certain point, the rotor breaks out instantaneously with a frequency of approx. 280 Hz and becomes totally

unstable. The vibration mode corresponds with the gyroscopic forward mode 2 of Appendix B.2 (rotor in ‘‘stiff’’ bearings).
In the simulations, the rotor can be run in the region of the Total Instability. In the experiment, however, the rotor is
immediately destroyed, when the rotor reaches Total Instability. Thus, the measurement cannot exhibit the same smooth
spectra in the region of the Total Instability as the simulation.
13. (a) Hot-gas turbocharger test rig and (b) 3D-waterfall diagram of a run-up measurement (y-displacement of measurement point) exhibiting Total

bility.
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5. Conclusions

The dynamic failure of turbocharger rotors supported in full-floating ring bearings, called Total Instability here, has been
examined in this paper. It has been shown that the physical reason for Total Instability is based on a synchronization effect
between the inner and outer oil whirl/whip, both simultaneously exciting the gyroscopic forward mode 2 of Appendix B.2.

The reason for Total Instability is not the mere simultaneous appearance of an unstable inner and outer fluid film, i.e.,
simultaneous inner and outer oil whirl/whip. Inner and outer fluid films can simultaneously be unstable—the 2. and 3.

Subsynchronous then appear simultaneously (see Fig. 2)—without leading to the Total Instability. In this case, inner and
outer fluid films can damp each other sufficiently, because the whirl/whip frequencies of the inner (2. Subsynchronous) and
the outer (3. Subsynchronous) fluid films are different, so that the inner fluid films damp the outer whirl/whip and vice versa
due to _�i;o and _di;o damping. As a result, bearing eccentricities ei,o remain clearly o1.

The situation becomes critical, if the inner and outer oil films simultaneously become unstable and if the inner and
outer whirl/whip frequencies synchronize, so that both excite the same natural mode (here the gyroscopic forward mode 2 of

Appendix B.2). Due to the whirl/whip synchronization, the mutual damping (_�i;o and _di;o damping) of the inner and outer
fluid films is strongly reduced and the amplitudes ei,o of the inner and outer whirl/whip almost reach 1.

In detail, the main results and conclusions of the numerical investigations are:
�
 Prior to bifurcation into Total Instability, the rotor oscillates in the 3. Subsynchronous, which means that the whirl/whip

frequency of the unstable outer fluid films excites the gyroscopic conical forward mode (Appendix B.1).

�
 In the simulations that reveal Total Instability, the inner and outer bearing eccentricities �i;o successively increase with

increasing rotor speed when the rotor oscillates in the 3. Subsynchronous.

�
 When the bearing eccentricities increase even more, the stiffness and damping characteristic of the inner and outer fluid

films change. Higher bearing eccentricities lead to increased bearing stiffnesses and cause a hardening of the fluid film
damping. Thus, the damping behavior of the inner and outer fluid films is reduced more and more.

�
 Increasing ring speeds, stiffening/hardening of the fluid films, and gyroscopic effects entail an increase of the frequency

of the 3. Subsynchronous, when rotor speed rises.

�
 When the threshold speed is reached—i.e., the bearing eccentricities are high enough, stiffening/hardening of the inner

and outer fluid films is large enough, and the ring speeds and the outer whirl/whip frequency are high enough—, the
limit cycle oscillation in the 3. Subsynchronous becomes unstable and the system bifurcates from the 3. Subsynchronous

into the Total Instability.

�
 At the onset of Total Instability, the inner fluid films become unstable, too.

�
 In the region of Total Instability, inner and the outer fluid films are simultaneously unstable, and their synchronized

whirl/whip frequencies both excite the gyroscopic forward mode 2 of Appendix B.2.

�
 When the whirl/whip of the inner and outer fluid films have synchronized, this results in a strong reduction of the

mutual damping between the inner and outer fluid film.

�
 Due to the loss of mutual damping in the Total Instability, inner and outer bearing eccentricities �i;o are very large (close

to 1). Furthermore, rotor amplitudes become extremely large.

Increasing imbalance, outer bearing clearance and inner bearing width as well as decreasing outer bearing width and oil
supply pressure decreased the threshold speed of Total Instability for the examined rotor.
Appendix A

Some basic geometric and kinematic relationships concerning hydrodynamic bearings are recapitulated in Appendix A.

A.1. Plain hydrodynamic bearing

First, we consider a plain hydrodynamic journal bearing [29,30], consisting of a rotor journal (radius r, center MJ) and a
bearing shell (radius R ¼ D=2, fixed center MS), see Fig. 14. Let x and y be the coordinates of a space-fixed coordinate system,
whose origin coincides with MS. The coordinates of the position vector to MJ with respect to the x, y-coordinate system are
denoted by DJx and DJy. The time derivatives of DJx and DJy yield the coordinates of the velocity vector of MJ

VJx ¼
d

dt
DJx ¼

_DJx; VJy ¼
d

dt
DJy ¼

_DJy. (A.1)

d=dtð�Þ denotes the time derivative with respect to the x, y-coordinate system. The angular velocity of the rotor journal is
represented by oJ and the angular velocity of the bearing shell by oS. The width of the bearing in axial direction is denoted
by B. c ¼ ðR� rÞ=R defines the relative radial clearance of the bearing and HðjÞ ¼ 1þ � � cosðjÞ the gap function (journal
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misalignment is not considered). A polar coordinate system with the unit vectors

er ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D2
Jx þ D2

Jy

q DJx

DJy

 !
; ed ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

Jx þ D2
Jy

q �DJy

DJx

 !
(A.2)

moves with the line of minimum film thickness, which is characterized by the angle d. The dimensionless bearing
eccentricity and its time derivative are determined by

� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

Jx þ D2
Jy

q
R �c

; _� ¼
VJx � DJx þ VJy � DJy

R � c �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

Jx þ D2
Jy

q . (A.3)

The angular velocity of the line of minimum film thickness is given by

_d ¼
�VJx � DJy þ VJy � DJx

ðD2
Jx þ D2

JyÞ
. (A.4)

The effective hydrodynamic angular velocity is defined by

oeff ¼ ðoJ þoS � 2 _dÞ. (A.5)
Fig. 14. Geometry of a plain hydrodynamic journal bearing.
A.2. Full-floating ring bearing

The above relationships are now extended for the floating ring bearing, see Fig. 15. Let x,y be the coordinates of a space-
fixed coordinate system. With
�
 DJx;DJy: center of the rotor journal with respect to the x, y-coordinate system,

�
 DRx;DRy: center of the floating ring with respect to the x, y-coordinate system,

�
 DSx;DSy: center of the bearing shell with respect to the x, y-coordinate system,
one obtains for the inner gap
�
 Dx_i ¼ DJx � DRx;Dy_i ¼ DJy � DRy: relative displacement coordinates of the inner fluid gap,

�
 Vx_i ¼

_DJx �
_DRx;Vy_i ¼

_DJy �
_DRy : relative velocity coordinates of the inner fluid gap,
and for the outer gap
�
 Dx_o ¼ DRx � DSx;Dy_o ¼ DRy � DSy: relative displacement coordinates of the outer fluid gap,

�
 Vx_o ¼

_DRx �
_DSx;Vy_o ¼

_DRy �
_DSy: relative velocity coordinates of the outer fluid gap.
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The unit vectors of the inner and outer polar coordinate system can be calculated by

er_i;o ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D2
x_i;o þ D2

y_i;o

q Dx_i;o

Dy_i;o

 !
; ed_i;o ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

x_i;o þ D2
y_i;o

q �Dy_i;o

Dx_i;o

 !
. (A.6)

Bearing eccentricities of the inner and outer oil gap and the corresponding time derivatives are calculated by

�i;o ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

x_i;o þ D2
y_i;o

q
Ri;o �ci;o

; _�i;o ¼
Vx_i;o � Dx_i;o þ Vy_i;o � Dy_i;o

Ri;o �ci;o �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

x_i;o þ D2
y_i;o

q . (A.7)

Time derivative of the line of minimum film thickness of the inner and outer oil gap is given by

_di;o ¼
�Vx_i;o � Dy_i;o þ Vy_i;o � Dx_i;o

ðD2
x_i;o þ D2

y_i;oÞ
. (A.8)

The angular velocity of the ring is denoted by oR. For the effective hydrodynamic angular velocities of the inner and outer
oil gaps, one gets

oeff_i ¼ ðoJ þoR � 2 _diÞ; oeff_o ¼ ðoR þ oS|{z}
¼0

�2 _doÞ ¼ ðoR � 2 _doÞ. (A.9)

It should be noted that oS is assumed to be zero throughout this paper.
Fig. 15. Geometry of a full-floating ring bearing.
A.3. Hydrodynamic bearing forces

Solving Reynolds equation for the inner and outer oil films enables the resultant bearing forces to be calculated. The
bearing forces can be subdivided into position-dependent (�i;o, di;o) and velocity-dependent (_�i;o, _di;o) forces [29,30]. The
former are nonlinear ‘‘spring forces’’ and the latter nonlinear ‘‘damping forces’’. Therefore, fluid films primarily show two
damping mechanisms:
�
 damping due to _�i;o movement and

�
 damping due to _di;o movement.
Appendix B

A gyroscopic eigenfrequency analysis of the rotor/bearing system gives information on the system’s natural frequencies
as a function of the rotor speed. To perform an eigenvalue analysis, the system has to be linearized. Therefore, the floating
ring bearings in the multibody model of Section 2 have been linearized, simply by replacing them with linear springs acting
in the x- and y-direction (assumed constant spring stiffness cres;x and cres;y, see Fig. 16). In order to simplify matters,
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bearing damping has been neglected in all eigenvalue analyses of Appendix B. The resultant stiffnesses cres;x and cres;y are
defined by
�
 the stiffness of the inner fluid film,

�
 the stiffness of the outer fluid film and

�
 the stiffness of the bearing housing (including the elasticity of the floating ring).
Fig. 16. Linear rotor/bearing model.
The three contributions to the resultant stiffness are arranged serially. As a consequence, if the bearing eccentricities are
not too large (clearly less than 1), the stiffnesses of the inner and outer fluid films are clearly lower than the stiffness of the
bearing housing and the ring. In this case, the resultant stiffness is dominated by the two fluid films, so that the stiffness of
the bearing housing and the ring can approximately be set to infinity. If, on the other hand, the bearing eccentricities of
both oil films are large (almost 1, as in the case of Total Instability), the fluid films are very stiff and the stiffness of the
bearing housing and ring must be taken into account when calculating the resultant stiffness.

In Appendix B, three eigenvalue calculations are carried out, which only differ by choosing different values for the
resultant spring stiffnesses cres;x and cres;y.
B.1. Eigenvalue analysis 1

The resultant spring stiffnesses are assumed to be cres;x ¼ cres;y ¼ 3000 ðN=mmÞ for both, the compressor-sided and the
turbine-sided floating ring bearing. This corresponds to the case that the bearing eccentricities are not too large (clearly less
than 1) and stiffness of bearing housing and ring can approximately be set to infinity. Fig. 17 shows the calculated normal
modes.
�
 The first two natural modes are rigid body conical modes (elastic shaft bending is small): The first mode is the gyroscopic

conical reverse mode, the second mode is the gyroscopic conical forward mode.

�
 The third and fourth natural mode are approximately rigid body translational modes (elastic shaft bending is little higher

compared with the conical modes): The third mode is the gyroscopic translational reverse mode and the fourth mode is
the gyroscopic translational forward mode.

�
 The fifth mode is the first torsional mode, which is not affected by gyroscopic effects and bearing stiffnesses.

�
 The sixth and seventh natural mode are elastic bending modes: The sixth mode is the gyroscopic bending reverse mode, the

seventh mode is the gyroscopic bending forward mode.

�
 All modes—with exception of the torsional mode—are spatial modes (almost circular orbits already at low rotor

speeds).
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Fig. 17. Gyroscopic mode shapes of the turbocharger rotor in linear bearings with cres;x ¼ cres;y ¼ 3000 ðN=mmÞ at a rotor angular velocity of

oRotor ¼ 8000 ðrad=sÞ: (a)–(g) gyroscopic reverse and forward modes.
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The gyroscopic natural frequencies of the rotor at a rotor speed of 76 400 rev/min are:
�
 Mode 1 (conical reverse): 60 Hz

�
 Mode 2 (conical forward): 160 Hz

�
 Mode 3 (translational reverse): 190 Hz

�
 Mode 4 (translational forward): 255 Hz

�
 Mode 5 (torsional): 580 Hz

�
 Mode 6 (bending reverse): 400 Hz

�
 Mode 7 (bending forward): 1420 Hz
Due to gyroscopic effects, the rotor’s natural frequencies change when rotor speed is increased. Development of the
system’s eigenfrequencies with increasing rotor speed is shown in Fig. 18.
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Fig. 18. Natural frequencies of the turbocharger rotor in linear bearings over the rotor speed.
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Remark on the determination of cres,x and cres,y: Replacing the highly nonlinear floating ring bearings with linear
springs over the whole speed range is certainly not correct. In a wide rotor speed range, the rotor performs complex self-
excited vibrations so that, strictly speaking, a linearization is not possible. For estimating cres;x and cres;y, several run-up
simulations with different rotor/bearing parameters have been performed in order to determine ‘‘mean bearing forces’’ and
‘‘mean shaft displacements’’. The ratio of ‘‘mean bearing forces’’ to ‘‘mean shaft displacements’’ yields a value of E3000 N/
mm, which has been used as equivalent spring stiffness. The presented eigenvalue analyses should be considered
qualitatively rather than quantitatively.
B.2. Eigenvalue analysis 2

The resultant spring stiffnesses are now assumed to be cres;x ¼ cres;y ¼ 1:5E4 ðN=mmÞ for both the left and the right
bearing. This corresponds to the case that the bearing eccentricities are large (e.g., when the rotor is totally unstable), so that
stiffness of bearing housing and ring must be taken into account for calculating the resulting bearing stiffnesses. Fig. 19
shows the calculated normal modes.
�
 The first two natural modes ‘‘resemble’’ the rigid body conical modes, but due to the stiff bearings, elastic shaft bending is
significantly larger. Gyroscopic mode 1 is a reverse mode, gyroscopic mode 2 is the corresponding forward mode.

�
 The third and fourth natural mode ‘‘resemble’’ the rigid body translational modes, but due to the stiff bearings, elastic

shaft bending is significantly larger. Gyroscopic mode 3 is a reverse mode, gyroscopic mode 4 is the corresponding forward
mode.

�
 The fifth mode is the first torsional mode.

�
 The sixth and seventh natural mode are gyroscopic bending modes with two vibration nodes: gyroscopic mode 6 is a

reverse mode, gyroscopic mode 7 is the corresponding forward mode.

�
 The eighth natural mode is an elastic bending mode with three vibration nodes (S-shaped): gyroscopic mode 8 is a reverse

mode. The corresponding forward mode is not shown in Fig. 19.

�
 All modes—with the exception of the torsional mode—are spatial modes.

The gyroscopic natural frequencies of the rotor at a rotor speed of 76 400 rev/min are:
�
 Gyroscopic mode 1 (reverse): 125 Hz

�
 Gyroscopic mode 2 (forward): 270 Hz

�
 Gyroscopic mode 3 (reverse): 230 Hz

�
 Gyroscopic mode 4 (forward): 420 Hz

�
 Gyroscopic mode 5 (torsional): 580 Hz

�
 Gyroscopic mode 6 (reverse): 850 Hz

�
 Gyroscopic mode 7 (forward): 1760 Hz

�
 Gyroscopic mode 8 (reverse): 1665 Hz
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Fig. 19. Gyroscopic mode shapes of the turbocharger rotor in linear bearings with cres;x ¼ cres;y ¼ 1:5E4 ðN=mmÞ at a rotor angular velocity of

oRotor ¼ 8000 ðrad=sÞ. (a)–(g) Gyroscopic reverse and forward modes.
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B.3. Eigenvalue analysis 3

In contrast to eigenvalue analysis 2, the resulting bearing stiffnesses are further increased and assumed to be
cres;x ¼ cres;y ¼ 1:5E5 ðN=mmÞ. This corresponds to the case of very stiff, almost rigid bearings. Eigenvalue analysis 3 is
carried out in order to show that housing stiffness may be important for calculating the accurate instability mode and
frequency when the rotor gets totally unstable (see Simulation 4 in Section 3). Fig. 20 shows the calculated normal modes.
�
 Gyroscopic mode 1 is a reverse mode and gyroscopic mode 2 is the corresponding forward mode. Both are elastic modes,
where the amplitudes of the turbine wheel are larger than the amplitudes of the compressor wheel.

�
 Gyroscopic mode 3 is a reverse mode and gyroscopic mode 4 is the corresponding forward mode. Both are elastic modes,

where the amplitudes of the turbine wheel are smaller than the amplitudes of the compressor wheel.

�
 The fifth mode is the first torsional mode.

�
 Gyroscopic mode 6 is a reverse mode with large elastic bending located at the turbine wheel. The corresponding forward

mode is not depicted in Fig. 20.

The gyroscopic natural frequencies of the rotor at a rotor speed of 76 400 rev/min are:
�
 Gyroscopic mode 1 (reverse): 170 Hz

�
 Gyroscopic mode 2 (forward): 430 Hz

�
 Gyroscopic mode 3 (reverse): 330 Hz

�
 Gyroscopic mode 4 (forward): 615 Hz

�
 Gyroscopic mode 5 (torsional): 580 Hz

�
 Gyroscopic mode 6 (reverse): 2310 Hz
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Fig. 20. Gyroscopic mode shapes of the turbocharger rotor in linear bearings with cres;x ¼ cres;y ¼ 1:5E5 ðN=mmÞ at a rotor angular velocity of

oRotor ¼ 8000 ½rad=s�: (a)–(g) gyroscopic reverse and forward modes.
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Appendix C

C.1. Laval rotor in single oil film bearings

Oil whirl/whip instabilities play a crucial role in the dynamics of turbochargers. Therefore, the stability behavior of a
Laval (Jeffcott) rotor during a rotor run-up is shortly recapitulated. The rotor (rotor mass m ¼ 0.1 kg, rotor imbalance
UR ¼ 0:4 gmm, shaft stiffness cshaft ¼ 2000 N=mm, internal shaft damping dshaft ¼ 0 Ns=m) is symmetrically supported in
two plain hydrodynamic journal bearings (bearing diameter D ¼ 6:0 mm, bearing width B ¼ 3:6 mm, relative bearing
clearance c ¼ 3:8E� 3, oil viscosity Z ¼ 0:01 Ns=m2), see Fig. 21(a). An external, linear damping force is applied at the rotor
center MC according to

Fd;ex ¼ �dex

VCx

VCy

 !
, (C.1)

where VCx and VCy denote the coordinates of the translational velocity of MC.
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Fig. 21. Laval rotor symmetrically supported: (a) in plain hydrodynamic journal bearings and (b) in full-floating ring bearings.
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During the run-up, rotor speed oRotor is steadily increased starting from zero angular velocity up to 4000 Hz. Fig. 22
depicts the motion of the rotor center MC and the rotor journal MJ as well as the bearing eccentricity � and the effective
hydrodynamic angular velocity oeff .
�

Fig
(a,

wat
Below the threshold speed of instability, the rotor performs imbalance vibrations around a stable equilibrium position
(note the rotor resonance at t � 2700 ms).

�
 The rotor becomes unstable (oil whirl/whip) at t � 3700 ms.

�
 Due to the applied external damping, oil whirl/whip instability can be passed through and the rotor becomes stable again

at t � 5900 ms.

Remark: Throughout this paper, the rotor (oil film) is said to become unstable, if the bearing eccentricities sharply increase.
However, the transition from stable imbalance vibrations to the region of complete instability (fully developed oil whirl/whip

region) can be rather complicated [25,34], so that one strictly should distinguish between ‘‘threshold speed of instability’’ and
‘‘region of complete instability’’ (fully developed oil whirl/whip region), which is not done in the present paper.
. 22. Run-up simulation of a Laval rotor in single oil film bearings (m ¼ 0:1 kg, cshaft ¼ 2000 N=mm, UR ¼ 0:4 gmm, dex ¼ 90 Ns=m, dshaft ¼ 0 Ns=m):

b) x- and y-position of mass center MC and rotor speed, (c, d) x- and y-position of rotor journal MJ, (e) 3D-waterfall diagram of plot (a), (f) top-view

erfall diagram, (g) bearing eccentricity � and (h) effective hydrodynamic angular velocity oeff .
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Fig. 22. (Continued)

B. Schweizer / Journal of Sound and Vibration 328 (2009) 156–190 185



ARTICLE IN PRESS

B. Schweizer / Journal of Sound and Vibration 328 (2009) 156–190186
C.2. Laval rotor in full-floating ring bearings

C.2.1. Laval rotor in full-floating ring bearings not exhibiting Total Instability

Fluid-film-induced instabilities and bifurcations occurring in rotors supported in full-floating ring bearings, see Fig.
21(b), are more complex than in the case of single oil film bearings [18,35]. A typical run-up simulation (0–4000 Hz in
10 000 ms) of a Laval rotor (m ¼ 0.1 kg, cshaft ¼ 3000 N/mm, dshaft ¼ 0 Ns/m, dex ¼ 0 Ns/m, UR ¼ 0.2 gmm) in full-floating
ring bearings (inner/outer bearing diameter Di/Do ¼ 6 mm/9.5 mm, inner/outer bearing width Bi/Bo ¼ 3.6 mm/6.15 mm,
relative inner/outer bearing clearance ci/co ¼ 3.8E�3/6.7E�3, inner/outer oil viscosity Zi/Zo ¼ 0.01 Ns/m2/0.015 Ns/m2) is
shown in Fig. 23. In full-floating ring bearings, both fluid films—the inner and the outer fluid film—may become unstable.
Hence, one observes oil whirl/whip instabilities generated by the inner and outer fluid films.
Fig. 23. Run-up simulation of a Laval rotor (m ¼ 0:1 kg, cshaft ¼ 3000 N=mm, UR ¼ 0:2 gmm, dex ¼ dshaft ¼ 0 Ns=m) in full-floating ring bearings (not

reaching Total Instability): (a, b) x- and y-position of mass center MC, rotor and ring speed. (c, d) x- and y-position of rotor journal MJ, (e) 3D-waterfall

diagram of plot (a), (f) top-view waterfall diagram, (g) inner/outer bearing eccentricities and (h, i) inner/outer effective hydrodynamic angular velocities.
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Fig. 23. (Continued)
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�
 The inner fluid films become unstable at tE2900 ms.

�
 The inner oil whirl/whip is passed through at tE4800 ms.

�
 At higher rotor speeds (tE6700 ms), the outer fluid films become unstable.
Note that although internal shaft damping and also external damping have been neglected, inner and outer bearing
eccentricities ei,o remain well below 1 in the oil whirl/whip region due to the (mutual) damping of the inner and outer fluid
films (the outer oil films damp the inner whirl/whip and vice versa). Also, rotor amplitudes remain moderate in the whirl/

whip regions.
C.2.2. Laval rotor in full-floating ring bearings exhibiting Total Instability

In contrast to single oil film bearings, full-floating ring bearings show a further kind of instability/bifurcation, namely
the Total Instability. In Sections 3 and 4, Total Instability has been analyzed in turbocharger systems. Total Instability may also
be observed in simple rotor systems [18]. To demonstrate this, we consider a Laval rotor (m ¼ 2 kg, cshaft ¼ 1.2E4 N/mm,
dex ¼ dshaft ¼ 0 Ns/m, UR ¼ 15 gmm) symmetrically supported in two full-floating ring bearings (inner/outer bearing
diameter Di/Do ¼ 18 mm/25 mm, inner/outer bearing width Bi/Bo ¼ 10 mm/10 mm, relative inner/outer bearing clearance
ci/co ¼ 5.25E�3/4.68E�3, inner/outer oil viscosity Zi/Zo ¼ 6.4E�3 Ns/m2/9.5E�3 Ns/m2). A run-up simulation (0–3000 Hz
in 10 000 ms) shows the following results, see Fig. 24.
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�

Fig
Tota

(a),
The rotor is stable and performs imbalance vibrations around a stable equilibrium position up to tE3700 ms.

�
 The outer oil films become unstable (outer oil whirl/whip) at tE3600 ms. The inner fluid films remain stable.

�
 At t � 7700 ms; the outer oil whirl/whip becomes unstable and the rotor bifurcates into Total Instability. At the onset of

Total Instability, the inner fluid films become unstable (note the large increase of ei) so that now both fluid films are
simultaneously unstable. The rotor amplitudes suddenly increase and the subsynchronous frequency jumps into the
resonance frequency oEig ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cshaft=m

p
¼ 390 Hz of the rotor, i.e., the system bifurcates into the rotor natural mode (due

to the large bearing eccentricities, the fluid films are very stiff and the natural frequency of the rotor/bearing system is
approximately oEig).
. 24. Run-up simulation of a Laval rotor (m ¼ 2 kg, cshaft ¼ 12 000 N=mm, UR ¼ 15 gmm, dex ¼ dshaft ¼ 0 Ns=m) in full-floating ring bearings (reaching

l Instability): (a, b) x- and y-position of mass center MC, rotor and ring speed, (c, d) x- and y-position of rotor journal MJ, (e) 3D-waterfall diagram of plot

(f) top-view waterfall diagram, (g) inner/outer bearing eccentricities and (h, i) inner/outer effective hydrodynamic angular velocities.
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Fig. 24. (Continued)
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As mentioned above, in rotors with full-floating ring bearings, inner and outer fluid films can simultaneously be unstable
without leading to the Total Instability, if the inner and the outer whirl/whip frequencies are different. In this case, the inner
and outer fluid films can damp each other mutually so that inner and outer bearing eccentricities ei,o remain well below 1.

In the critical case of Total Instability, the inner and the outer whirl/whip frequency synchronize, and the common whirl/

whip frequency excites the rotor natural mode (resonance frequency oEig). Due to this synchronization, the mutual
damping (_�i;o and _di;o damping) between the inner and outer oil films is strongly reduced. As a consequence, rotor
amplitudes become very large and bearing eccentricities ei,o reach almost 1.

When the Laval rotor bifurcates into Total Instability, quite similar effects can be observed as in the case of the
turbocharger rotor. When the rotor speed is increased, the bearing eccentricities �i;o continuously increase, which leads to a
stiffening of the fluid films and a hardening of the oil film damping. Consequently, the damping behavior (_�i;o and _di;o

damping) of the inner and outer fluid films is successively reduced. Also, the ring speed and the outer oil whirl/whip

frequency steadily increase with increasing rotor speed. When the bearing eccentricities, the fluid film stiffening/
hardening, and the outer oil whirl/whip frequency are high enough, the limit cycle (outer oil whirl/whip) becomes unstable
and the system bifurcates into Total Instability.
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